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Abstract
Solutions for certain discrete integrable systems are constructed by using
integral solutions for hypergeometric q-difference systems with |q| = 1. We
apply a solution for Lauricella’s D-type hypergeometric q-difference system
with |q| = 1 to construct a solution for the discrete KP-hierarchy. Furthermore,
an integral solution of a q-difference analogue of Bessel’s equation is newly
introduced and applied to construct a solution for a q-difference analogue of
the cylindrical Toda equation with |q| = 1.

PACS numbers: 02.30.Gp, 02.10.Ab, 02.30.lk, 02.40.-k, 05.45.-a

1. Introduction

In recent progress on studies on the quantum integrable systems and the representation theory of
quantum groups, q-analyses with |q| = 1 have become of general interest. They are necessary
for massive field theory [27], forXXZ-models in the gapless regime and representation theory
on Uq(sl(2,R)) and on SLq(2; R). Basic ideas for the construction of integral solutions
were introduced by Jimbo–Miwa and by Ruijsenaars. Jimbo and Miwa [5] used Kurokawa’s
double sine function for the construction of integral solutions for the quantized Kniznik–
Zamolodchikov equation with |q| = 1 (see also [10, 11, 14, 15]). Ruijsenaars [25] introduced
generalized gamma functions and applied them to construct eigenfunctions of commuting
difference operators. Jimbo and Miwa’s idea is effective for hypergeometric q-difference
systems. Nishizawa and Ueno [17–19] constructed the solutions as the Barnes type and the
Euler type integrals. Takeyama [28] studied structures of the Barnes type solution from a
viewpoint of twisted q-de Rham cohomologies. Ponsot and Teschner [24] and Kharchev
et al [9] applied Nishizawa and Ueno’s solution to representations of Uq(sl(2,R)).

We introduce some integral solutions for q-difference systems with |q| = 1 and apply
them to construct bilinear relations of some discrete integrable systems. In studies on nonlinear
integrable systems, various researchers applied special function theory to construct their
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solutions. Kametaka [7,8], Okamoto [21,22] and Nakamura [16] investigated hypergeometric
solutions of the Toda equation. With respect to discrete integrable systems, Kajiwara and
Satsuma [6] introduced a q-difference analogue of the cylindrical Toda equation, whose
solution is represented by using q-Bessel functions. Tokihiro et al [29,31] considered various
special function solutions based on the Darboux transformations. They gave a solution for
the discrete KP-hierarchy introduced by Miwa [13] and Ohta et al [23]. Their method is
applicable to the construction in the case when |q| = 1. In this paper, we propose to give q-
special function solutions for nonlinear discrete integrable systems in the case when |q| = 1.
In section 2, we give a brief survey on Kurokawa’s double sine function and certain functions
which play important roles in the following section. In section 3, we construct a τ -function of
the discrete KP-hierarchy by using an integral solution for Lauricella’sD-type hypergeometric
q-difference system with |q| = 1 [17]. It satisfies the same contiguous relations as those of
q-Lauricella’s hypergeometric function with 0 < q < 1 (cf [20]). We can use the same
machinery as Tokihiro et al [29] and can construct a special case of the Casorati type solution
for the bilinear relation introduced by Miwa [13] and Ohta et al [23]. In section 4, we newly
introduce an integral solution for a q-difference analogue Bessel’s equation with |q| = 1 (we
call it the ‘q-Bessel function with |q| = 1’). In the case when 0 < q < 1, some kinds of
q-analogues of the Bessel function are known (see e.g. [2]). Our solution corresponds to a
Barnes type integral of Jackson’s q-Bessel function [3, 4]. We regard contiguous relations of
the integral as dispersion relations in a similar way to Kajiwara–Satsuma [6] and construct a
solution for their cylindrical q-Toda equation in the case when |q| = 1.

2. q-gamma function with |q| = 1

In this section, we introduce the function which is important in the following argument. First,
we introduce Kurokawa’s double sine function S2(z|(ω1, ω2)) [1, 12].

Definition 2.1. For ω := (ω1, ω2) ∈ C2, we define ζ2(s, z|ω), �2(z|ω) and S2(z|ω) as

ζ2(s, z|ω) :=
∑

m1,m2∈Z�0

(z + m1ω1 + m2ω2)
−s

�2(z|ω) := exp

(
∂

∂s
ζ2(s, z|ω)|s=0

)

S2(z|ω) := �2(z|ω)−1�2(ω1 + ω2 − z|ω).
It is known that the double sine function satisfies the functional relation

S2(z + ω1|ω)
S2(z|ω) = 1

2 sin πz
ω2

. (1)

By using this function, we can construct a ‘q-shifted factorial with |q| = 1’. We suppose that
q = e2π iω (0 < ω < 1, ω /∈ Q), i.e. |q| = 1 and q is not a root of unity. From now on, we
take a branch of a logarithm such that log q = 2π iω.

Definition 2.2. We define 〈z〉, �̃(z) and B̃(z) as

〈z〉 = 〈z; q〉 := iz−1q− z(z−1)
4 S2

(
z

∣∣∣∣
(

1,
1

ω

))

�̃(z) = �̃(z; q) := √
ω

−1
(1 − q)1−z〈z〉−1

B̃(a, b) = B̃(a, b; q) := �̃(a)�̃(b)

�̃(a + b)
.
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These functions have the following properties:

Lemma 2.3. (1) 〈z〉 and �̃(z) satisfy functional equations

〈z〉 = (1 − qz)〈z + 1〉
�̃(z + 1) = [z]q�̃(z) �̃(1) = 1

where

[x]q = 1 − qx

1 − q
. (2)

(2) 〈z〉 has simple poles at

z = n1 +
n2

ω
(n1, n2 ∈ Z>0)

and simple zeros at

z = n1 +
n2

ω
(n1, n2 ∈ Z�0).

(3) As |z| → ∞ within a sector not containing the real axis, 〈z〉 and �̃(z; q) have asymptotic
behaviour:

〈z〉 =
{

O(1) Im z > 0
exp[−π i{ωz2 − (1 + ω)z)} + O(1)] Im z < 0

�̃(z; q) = exp

[
(1 − z) log(q − 1) + (z − 1) log i

+
z(z − 1)

4
log q ∓ π i

(
ωz2

2
− ω + 1

2
z

)
+ O(1)

]
(for ± Im z > 0).

This lemma follows from results of [5, 26]. We note that 〈z〉 (resp. �̃(z; q)) satisfies the
same relation as the q-shifted factorial (qz)∞ := ∏∞

k=0(1 −qz+k) (resp. the q-gamma function
�q(z) := (1−q)1−z (q)∞

(qz)∞
) with 0 < q < 1. In the case when |q| = 1, these infinite products do

not converge, however, we can construct an integral solution by using 〈z〉 and �̃(z; q) instead
of (qz)∞ and �q(z).

3. A solution of Lauricella’s hypergeometric q-difference system with |q| = 1

3.1. Construction of an integral solution

In this section, we introduce a q-special function solution for the discrete KP-hierarchy by
using an integral solution for Lauricella’s D-type hypergeometric q-difference system with
|q| = 1 [18]. First we recall the idea how the solution can be constructed. In the case when
0 < q < 1, the Jackson integral solution for Lauricella’s D-type hypergeometric q-difference
system [20] is represented as follows:

φD(z) = φD

(
a; b1 b2 . . . bn

c
; z; q

)

= 1

Bq(a, c − a)

∫ 1

0
ta

(tq)∞
(tqc−a)∞

n∏
k=1

(tzkq
bk )∞

(tzk)∞

dqt

t
(3)
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where a, bj (j = 1, 2, . . . , n) and c are complex parameters, Bq(x, y) is the q-beta function
(see [2]). This satisfies the following q-difference system:

{(1 − cq−1Tq)(1 − Tq,zj )− zj (1 − aTq)(1 − bjTq,zj )}φD(z) = 0 (j = 1, 2, . . . n)

{zj (1 − bjTq,zj )(1 − Tq,zk )− zk(1 − Tq,zj )(1 − bkTq,zk )}φD(z) = 0,

(1 � j < k � n)

(4)

where Tq,zk is a q-shift operator acting on zk and Tq := Tq,z1Tq,z2 · · · Tq,zn .
We introduce an integral solution of a q-difference analogue of Lauricella’s D-type

hypergeometric system with |q| = 1 [17]. In this section, we suppose that q = e2π iω

(0 < ω < 1, ω /∈ Q) and take such a branch of a logarithm that log q = 2π iω. In order
that the integral makes sense, we impose the following conditions on the parameters a, bj
(j = 1, 2, . . . n) and c ∈ C:

Conditions on parameters. We assume that

a − c /∈ Z>0 (5)

bj /∈ Z<0 for j = 1, 2, . . . , n (6)

Ra > 0 R

(
c −

n∑
j=1

bj − 2

)
> 0. (7)

Under these conditions, we can define the Euler integral 'D(x). Let us denote by K any
bounded domain in the region

{x = (x1, x2, . . . , xn) ∈ Cn | xj /∈ Z<0 for j = 1, . . . , n}.
Definition 3.1. Suppose that a, bj and c satisfy (5)–(7) then, for x ∈ K , we define 'D(x) by

'D(x) = 'D

(
a; b1 b2 . . . bn

c
; x; q

)

:= 1

B̃(a, c − a)

∫ +i∞

−i∞
qas

〈s + 1〉
〈s + c − a〉

n∏
k=1

〈s + xk + bk〉
〈s + xk〉 ds

where the contour lies on the right of the poles

s = −xk + n1 +
n2

ω
s = a − c + n1 +

n2

ω
(n1, n2 ∈ Z�0)

and on the left of the poles

s = −xk − bk + m1 +
m2

ω
s = −1 + m1 +

m2

ω
(m1,m2 ∈ Z>0)

where k = 1, 2, . . . , n.

Then, we can see that 'D(x) is a solution of the system of difference equations which are
obtained by transforming the multiplicative variables of (4) to the additive variables.

Theorem 3.2.

{(1 − qc−1T +)(1 − T +
xj
)− qxj (1 − qaT +)(1 − qbj T +

xj
)}'D(x) = 0 (j = 1, 2, . . . n)

{qxj (1 − qbj T +
xj
)(1 − T +

xk
)− qxk (1 − T +

xj
)(1 − qbkT +

xk
)}'D(x) = 0

(1 � j < k � n)

(8)

where

(T +
xj
f )(x1, x2, . . . , xn) := f (x1, . . . , xj−1, xj + 1, xj+1, . . . , xn)

T + := T +
x1
T +
x2

· · · T +
xn

T +
>k := T +

xk+1
· · · T +

xn
.
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3.2. A solution for the discrete KP-hierarchy

We note that 'D(x) satisfy similar contiguous relations [18] to those of the q-analogue of
Lauricella’s D-type hypergeometric function (cf [20]). Thus, we can use the same method as
Tokihiro et al [29]. If we define φ(k1, k2, . . . , kN ; t) as

φ(k1, k2, . . . , kN ; t) := B̃(a, c − a)

×'D

(
a + t; b1 − k1 b2 − k2 . . . bN − kN

c + t
; x; q

)

=
∫ +i∞

−i∞
q(a+t)s 〈s + 1〉

〈s + c − a〉
N∏
j=1

〈s + xj + bj − kj 〉
〈s + xj 〉 ds

then, we can see that

φ(k1, k2, . . . , kN ; t)− φ(k1, . . . , kj−1, kj − 1, kj+1, . . . , kN ; t)
= qxj+bj−kj φ(k1, k2, . . . , kN ; t + 1). (9)

From now on, we introduce N -sets of parameters Si := {a(i), {b(i)j }2�i�N, c
(i)} (1 � j � N)

such that all Si satisfy conditions (5)–(7) and that vectors

(φi(k1, k2, . . . , kN ; 0), . . . , φi(k1, k2, . . . , kN ;N − 1)) (1 � i � N)

are a linearly independent set where

φi(k1, k2, . . . , kN ; t) := B̃(a(i), c(i) − a(i))

×'D

(
a(i) + t; b

(i)
2 − k2 b

(i)
3 − k3 . . . b

(i)
N − kN

c(i) + t
; x; q

)
.

From relation (9), it follows that

det




1 a1 a2
1 · · · aN−2

1 aN−2
1 τ1τ̂1

1 a2 a2
2 · · · aN−2

2 aN−2
2 τ2τ̂2

...
...

...
...

...

1 aN a2
N · · · aN−2

N aN−2
N τN τ̂N


 = 0 (10)

for kj ∈ Z�0, where

aj := qxj+bj−kj−1 for 1 � j � N.

τi := τ(k1, k2, . . . , ki−1, ki + 1, ki+1, . . . , kN)

τ̂i := τ(k1 + 1, k2 + 1, . . . , ki−1 + 1, ki, ki+1 + 1, . . . , kN + 1)

τ (k1, k2, . . . , kN) := det [φi(k1, k2, . . . , kN ; j)]0�i.j�N .

Relation (10) is a special case of an autonomous version of the bilinear relation of the discrete
KP-hierarchy introduced in Miwa [13] and Ohta et al [23]. We obtain a q-special function
solution in the case when |q| = 1.

4. q-Bessel function with |q| = 1

4.1. Construction of an integral solution

In this section, we construct an integral solution for aq-difference analogue of Bessel’s equation
in the case when |q| = 1. First, let us recall the case when 0 < q < 1. We introduce a q-
difference analogue of Bessel’s equation as(

[ϑ + α] [ϑ − α] + z2
)
f (z) = 0 (11)
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where

[ϑ + a] f (z) := 1 − qaf (qz)

1 − q
.

As q → 1, [ϑ + α] coincides with the Euler operator

(ϑ + α) = z
d

dz
+ α

and (11) coincides with Bessel’s differential equation (cf [30]){
z2 d2

dz2
+ z

d

dz
+

(
z2 − α2

)}
f (z) = 0.

A solution of (11) can be represented as the following power series:

f (z) :=
∞∑
k=0

(−1)kzα+2k

[2]α+2k
q �q2(α + k + 1)�q2(k + 1)

. (12)

By using residue calculus, we can see that the above series f (z) has an integral representation

f (z) =
∫ +i∞

−i∞

1

[2]α+2s
q �q2(α + s + 1)�q2(s + 1)

πzα+2s

sin πs
ds. (13)

In the case when |q| = 1, the power series (12) does not converge. However, we can obtain
an integral solution like (13). We construct the integral by using �̃(z; q) instead of �q(z).∫

1

[2]α+2s
q �̃(α + s + 1; q2)�̃(s + 1; q2)

πzα+2s

sin πs
ds.

We note that the integral satisfies (11) if �̃(z; q) satisfies lemma 2.3 (2) and if the integral con-
verges. Therefore, under the suitable condition on the parameter α, we can obtain an integral
solution for (11) even in the case |q| = 1.

From now on, we suppose q := eπ iω (0 < ω < 1, ω /∈ Q) and that log takes such a branch
that log q = π iω. We introduce an integral solution of a q-difference analogue of Bessel’s
equation. In order that the integral makes sense, we impose a condition on the parameter α:

Re α > 1. (14)

Under this condition, let us define a real number δ such that

0 < δ <
πω

2
(Re α − 1)

and a sector

Sδ :=
{
z ∈ C

∣∣∣−πω

2
+ δ < arg(z) < πωRe α − 3πω

2
− δ

}
.

We introduce an integrand function jα(s, z; q) and an integral Jα(z; q) as follows:

Definition 4.1.

jα(s, z; q) := 1

[2]α+2s
q �̃(α + s + 1; q2)�̃(s + 1; q2)

πzα+2s

sin πs

Jα(z; q) :=
∫ +i∞

−i∞
jα(s, z; q) ds

where the contour lies on the left of the poles

s = m1 +
m2

ω

(
m1 ∈ Z�0,m2 ∈ Z�0

)

s = −α + m1 +
m2

ω

(
m1 ∈ Z�0,m2 ∈ Z>0

)
.
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From lemma 2.3, ja(s, z; q) decays exponentially as s → ±i∞. Thus, Jα(z; q) is analytic in
the sector Sδ and can be continued analytically. We can see that Jα(z; q) satisfies a q-difference
analogue of Bessel’s equation with |q| = 1.

Theorem 4.2.

{[ϑ + α][ϑ − α] + z2}Jα(z; q) = 0.

Proof. This theorem can be proved in a similar way to Nishizawa–Ueno [18]. We note that
jα(s, z; q) satisfies

[ϑ + α] [ϑ − α] jα(s, z; q) = −z2jα(s + 1, z; q).
Thus, from the location of the poles of the integrand, we have

[ϑ + α] [ϑ − α]
∫ +i∞

−i∞
jα(s, z; q) ds = −z2

∫ +i∞

−i∞
jα(s, z; q) ds

because these q-difference operators commute the integral. �

4.2. Solution for the q-Toda equation with |q| = 1

We can see that Jα(z; q) satisfies the contiguous relations

[ϑ − α] Jα(z; q) = −zJα+1(z; q) [ϑ + α] Jα(z; q) = zJα−1(z; q) (15)

by using the same argument as the proof of theorem 4.2. Once we have these relation, we can
apply Kajiwara–Satsuma’s method [6] to construct a solution for a q-difference analogue of
the cylindrical Toda equation with |q| = 1.

We define τn(r) as

τn(r) := det[Jn+pi+j−1(r; q)]1�i,j�N

where pi (i = 1, . . . , N) are such constants that

Repi > 1

and that the above determinant does not vanish. For n � 1, τn(r) satisfies the following bilinear
equation:

τn(q
2r)τn(r)− τ 2

n (qr) = (1 − q)2r2{τn+1(qr)τn−1(qr)− τn(q
2r)τn(r)}.

This is a bilinear relation for a q-difference analogue of the cylindrical Toda equation. We
have seen that a Kajiwara–Satsuma type solution can be constructed even in the case when
|q| = 1.
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